安装
pip 安装
嗯,顺利的话一行命令即可。
$ pip install cnocr[ort-cpu]
如果是 GPU 环境使用 ONNX 模型,请使用以下命令进行安装:
$ pip install cnocr[ort-gpu]
安装速度慢的话,可以指定国内的安装源,如使用豆瓣源:
$ pip install cnocr[ort-cpu] -i https://mirrors.aliyun.com/pypi/simple
Note
请使用 Python3(3.6以及之后版本应该都行),没测过Python2下是否ok。
Warning
如果电脑中从未安装过
PyTorch
,OpenCV
python包,初次安装可能会遇到问题,但一般都是常见问题,可以自行百度/Google解决。
包含API接口安装
CnOCR 自 V2.2.1 开始加入了基于 FastAPI 的HTTP服务。开启服务需要安装几个额外的包,可以使用以下命令安装:
pip install cnocr[serve]
安装完成后,可以通过以下命令启动HTTP服务(-p
后面的数字是端口,可以根据需要自行调整):
cnocr serve -p 8501
服务的调用方式请参考 首页/HTTP服务 。
如遇到安装问题,欢迎在 Github、 知识星球CnOCR/CnSTD私享群 或者 微信交流群反馈给作者 breezedeus 。
Docker Image
可以从 Docker Hub 直接拉取已安装好 CnOCR 的镜像使用。
> docker pull breezedeus/cnocr:v2.2.2
利用以下命令启动容器:
> docker run -it -p 8501:8501 breezedeus/cnocr:v2.2.2 bash
容器启动后会自动启动HTTP服务,在容器外可以直接调用相应的服务:
> curl -F image=@docs/examples/huochepiao.jpeg http://0.0.0.0:8501/ocr
更详细的调用方式见 HTTP服务 。
GPU 环境使用 ONNX 模型
默认情况下安装的 ONNX 包是 onnxruntime
,它只能在 CPU
上运行。如果需要在 GPU
环境使用 ONNX 模型,需要卸载此包,然后安装包 onnxruntime-gpu
。
pip uninstall onnxruntime
pip install onnxruntime-gpu